A Serum Immune Factor in Detection of an Occupational Group with Increased Risk for Lung and Nose Cancer

HANS K. KOTLAR, MORTEN BOYSEN and TORE SANNER

Laboratory for Environmental and Occupational Cancer, and Department of Pathology and the Norwegian Cancer Society, NHIK, The Norwegian Radium Hospital, Montebello, Oslo 3, Norway

Abstract—Epidemiological studies have demonstrated that workers in the nickel refinery industry have an increased risk for respiratory tract carcinoma. In the present study, serum from 51 workers at a Norwegian nickel refinery have been tested against lung, nasal and breast carcinoma antigens in the humoral leukocyte adherence inhibition test. The breast cancer antigen was used as a non-specific antigen. The frequency of positive response against the lung carcinoma antigen was significantly higher among the refinery workers (21/51) than in the controls (3/17) (P = 0.07). Moreover, among workers employed for 10 years or more, the response was higher than found for workers with shorter employment. Of the nickel workers with nasal dysplasia, 56% (15/27) gave a positive reaction against the lung carcinoma antigen compared to 25% (6/24) of the workers without dysplasia (P = 0.03). The same trends were also found for the nasal carcinoma antigen. The study gives further support for the usefulness of the humoral leukocyte adherence inhibition test in identification of individuals with an increased risk for developing cancer.

INTRODUCTION

Considerable effort has currently been centered on the development of tests for early diagnosis of cancer and for identification of persons at high risks for cancer. These tests are either based on the detection of specific proteins released from the tumors [1–5] or on assays which may reflect antitumor immunity [6–11].

Recently, a new test, the humoral leukocyte adherence inhibition assay (H-LAI) for detection of a humoral immune factor in sera of cancer patients, has been developed [12, 13]. The serum factor responsible for the observed reaction is antigen-specific, i.e. it is directed against and forms stable complexes with the cancer-related antigen [14, 15].

Promising results have been obtained with the new H-LAI assay in studies on patients with breast and lung cancer. With serum from these two types of cancer, a response rate of 80–90% has been obtained [12, 13]. Of particular interest is the demonstration of positive reactions on serum samples drawn up to five years before the clinical diagnosis of lung cancer [16]. This finding suggests that specific cancer-related serum immune factors can be detected even in preneoplastic stages.

For further evaluation of the H-LAI assay, it was of interest to study the possible response in sera from a group of persons at a high risk of developing cancer. Workers occupationally exposed to nickel have a high risk for nasal and pulmonary carcinoma [17-21]. The development of these malignancies are probably preceded by epithelial dysplasia [22-24].

In the present study, sera from nickel refinery workers with nasal dysplasia were tested against lung and nasal carcinoma antigens and the results compared to groups of workers without nasal dysplasia, controls and patients with nasal carcinoma. A breast cancer antigen was used as a nonspecific antigen.

MATERIALS AND METHODS

With the exception of 4 persons with nasal carcinoma, all individuals participating in this study were or had been employed in Falconbridge Nickelverk A/S, Kristiansand, Norway. Two groups (I, II) of nickel-exposed workers were selected and compared to a group (III) of age-matched, non-exposed individuals and patients with verified nasal carcinoma (IV). None of the control persons or nickel workers had any known malignancies when the study was started; neither had they developed any

malignant tumors one year following the sampling of blood and nasal mucosa specimens.

Clinical material

I. Short-term employees. This group comprised 18 randomly selected persons employed for 6-10 years and not previously biopsied.

II. Long-term employees. These were 33 randomly selected active workers employed for more than 10 years. In 25 of these, previous nasal biopsies showed epithelial dysplasia. With the exception of 2 persons, the dysplasia had been verified in 2 or more biopsies. This group further included 8 workers without noticeable nasal dysplasia in two or more biopsies.

III. Controls. The controls were made up of 17 randomly selected office workers not previously involved in the refinery process.

IV. Persons with cancer nasi. Group IV was made up of 6 patients with verified nasal carcinoma. The histological type were in all cases squamous cell carcinoma. Two of the patients had an occupational history of nickel exposure.

Collection of samples

Biopsy specimens. Biopsies were taken from the anterior curvature of the middle nasal turbinate in local anesthesia (xylocain 2% and adrenalin 0.1%). In patients with malignant tumors several biopsies were taken from the tumor. All specimens were fixed in buffered 6% formaldehyde (pH 7.4), embedded, sectioned and stained with hematoxylin-eocin. Histological grading and scoring was performed according to the concept of gradual epithelial transformation as outlined by Torjussen et al. [22, 23]. Pseudostratified epithelium was scored as 0, metaplasia scored as 1-4, dysplasia as 5 and carcinoma 7.

Serum samples. Blood was drawn on the same day as biopsy sampling. The serum was immediately frozen at -25°C. All sera were coded.

Clinical information

Occupational history, including duration of nickel exposure, smoking habits, alcohol consumption, medication, and previous and present illnesses, in particular, allergic diseases and chronic lung diseases, were evaluated from a questionnaire and interview. Two persons with allergic diseases were omitted from the material due to corticosteroid medication at the time of investigation.

H-LAI analyses

Indicator cells. Blood from normal, healthy blood donors was purchased from Røde Kors Blodcentral, Oslo. The mononuclear cells were separated according to the method of Bøyum [25]. The cells were washed and treated with 0.025% trypsin as described elsewhere [12, 13].

Freezing procedure. With minor modifications, the procedure described by Oldham et al. [26] was used. Briefly, to a suspension of freshly prepared trypsin-treated indicator cells [10⁷ cells/ml in Eagle's Minimum Essential Medium (MEM)] equal volumes of a freezing solution [20% dimethylsulphoxide (DMSO) and 20% fetal calf serum (FCS) in MEM] were added dropwise and the mixed solution was left on ice for 10 min before freezing at a rate of approximately – 1°C/min. The cells were stored at – 80°C and used within one month.

Thawing procedure. The tubes were melted at 37° C until the last ice crystals disappeared. They were then placed on ice for 2 min. Doubling volumes of a room temperature thawing solution (20% FCS in MEM) were added at 1-min intervals until a DMSO concentration of 4% was achieved. After 5 min on the bench the cells were washed in Hank's Balanced Salt Solution and subsequently in MEM, and reconstituted in MEM to a final concentration of $2.5 \times 10^7 \text{ cells/ml.}$ Viability was tested by trypan blue incorporation and varied between 92 and 98%.

Cancer antigens. Potassium chloride (3.5 M) extracts of the cell lines Calu-1 and MCF-7 were used as lung and breast cancer antigens. The Calu-1 cell line had been isolated from a squamous cell carcinoma of the lung by Dr. J. Fogh, Sloan Kettering Institute, New York. The MCF-7 cell line was derived from pleural effusion of a breast carcinoma and was kindly provided by Dr. M. Rich, Michigan Cancer Foundation, Detroit. Nasal cancer antigen was prepared by KCl extraction from a squamous cell carcinoma of a former nickel worker.

H-LAI technique. The H-LAI test was performed without access to clinical and histological information following the procedure described by Kotlar and Sanner [12]. In brief, serum $(0.5 \mu l)$ and antigen $(5 \mu g)$ protein) were incubated in a total volume of 150 µl of MEM at 4°C for 1 hr. Cryopreserved trypsin-treated indicator cells (106) were added to the above mixture and incubated for 30 min at 37°C. Aliquots of the cell suspension were subsequently transferred to hemocytometers and incubated for another hour at 37°C. At the end of the incubation the cells were counted in nine predetermined squares on each side of the hemocytometer. Between 4000 and 5000 cells were counted by the use of an image analyser. The cover glass was removed, the surface was gently rinsed to remove nonadherent cells and the same squares were recounted. Each test was performed in duplicate. The response of the test is expressed by the LAI index:

$$\frac{A_a - A_p}{A_a} \times 100,$$

where A_a and A_p represent the percentage of adherent cells in the absence and presence of antigen respectively. On the basis of previous experience, an LAI index greater than 10 was taken as a positive test [12, 13].

The adherence of the cryopreserved indicator cells was found not to be as reproducible as freshly made cells. Due to this fact, a standard normal serum was tested together with each series of analyses. The LAI indices obtained with this serum against the relevant antigens were subtracted from the LAI indices found for the serum under investigation.

Statistics. Contingency tables (two-way classification) with chi-quadrate statistics were used for evaluation of the results.

RESULTS

Table 1 presents the age, years of employment at the nickel refinery, the histological score of the nasal biopsies and the H-LAI indices for all participating persons. The same samples were tested against lung, nasal and breast carcinoma antigens. The breast carcinoma antigen was included in the study as a nonspecific antigen.

The H-LAI responses are summarized in Table 2. Both for the lung and nasal carcinoma antigens, the percentage of positive responses was higher in the nickel workers than in the controls. A still higher response rate was found in persons with nasal carcinoma. Interestingly, the H-LAI response rate was higher among long-term employed workers than in short-time employees. The finding that the sera from 5 of the 6 patients (83%) with nasal cancer reacted with the nasal carcinoma antigen shows that this antigen has a high sensitivity. However, the specificity was less satisfactory since 24% of the controls also responded.

Three of the 17 control persons (18%) showed a positive response against lung carcinoma antigen. This response rate was considerably higher than found in previous studies [12, 13]. Two factors may contribute to this discrepancy. All except two of the control persons were smokers. Moreover, it should also be noted that in the present study cryopreserved lymphocytes were used as indicator cells. A greater variation and a slightly higher response rate have been observed with cryopreserved

cells compared with freshly prepared indicator lymphocytes.

The percentage of positive responders against the breast carcinoma antigen found for the long-term nickel workers was higher than among the controls and the short-term employees. As most of the persons who reacted against the breast carcinoma antigen also showed reaction against both the lung and nasal carcinoma antigens (see Table 1), the response could be due to shared common cancer-associated antigenic determinants between the nasal, lung and breast cancer antigens. It should also be stressed that crude antigen preparations were used. These preparations contain most of the surface proteins of the cell, including histocompatibility tumor antigens.

The percentage of positive responses in controls and in nickel workers was similar when comparing persons over and under 50 years of age (Table 3). Thus there is no reason to assume that the difference in response rate between short and long-term employees could be caused by differences in age distribution.

The H-LAI responses in nickel workers with nasal epithelial dysplasia were compared with the results obtained with nickel workers without dysplasia (Table 4). While only 25% of the nickel workers without dysplasia reacted against the lung carcinoma antigen, the percentage of positive responders among the nickel workers with dysplasia was 56%, which is significantly higher (P = 0.03). Similarily, the response rate against the nasal carcinoma antigen was higher among nickel workers with nasal dysplasia than without dysplasia.

DISCUSSION

Epidemiological studies have demonstrated that workers in the nickel refinery industry have an increased risk for respiratory tract carcinoma [17-21]. For men employed in roasting/smelting and electrolyses departments in a nickel refinery in Norway for more than 3 years, the ratio of observed to expected was 7:1 for lung cancer and 40:1 for nasal cancer [18]. The risk of nasal cancer increased with the duration of employment, being 168:1 for workers employed for 25 years or more [27]. While lung cancer among Norwegian men is approximately 26 times as frequent as nasal cancer, lung cancer in nickel workers exceeded nasal cancer by a factor of 3.5 only.

As part of a preventive health program, histological examination of nasal biopsies has been made on a large scale since 1976 [22, 23, 28]. From these studies it is concluded that nickel

Table 1. H-LAI responses and histological score of nasal biopsies

Breast carcinoma antigen		35	7	6	10	7	5	10	æ	9	7	11	0	∞	10	4	œ	4		5	71	oc i	J.	2	6	6	9	9	5	7	4	6	85	6	9	4	0	85
LAI index Nasal carcinoma antigen		9	9	10	20	10	9	20	10	14	٥C	12	z	9	6	4	ec.	4		61	7.	14	14	ж	eC	5	10	4	11	7	က	9-	0	6	4	9	12	ĸ
Lung carcinoma antigen	Controls	9	œ	18	6	6	9	17	10	35	20	14	2	∞	6	1	10	6	Chart-torm complowers	601	17	14	91	9	9	æ	9	6	20	9	17	9	2	6	80	10	ಉ	9
Histological score		1	ന	1	2	1	1	2	0	æ	δ	2	0	-	0	_	1	2	Chost	n n	. ·	- ,	_	œ	ಹು	2	8	જ	જ	0	0	6 С)	2	4	ស	2	2	0
Years of employment		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		o	۰ ۰	0	œ	7	6	&	7	6	&	œ	10	∞	7	7	80	∞	10	10
Age	<u> </u> 	20	55	62	57	9	53	47	42	52	99	52	52	52	20	51	75	36		77	5 8	X	31	58	51	34	33	28	33	53	35	27	27	36	53	36	36	30
Subject No.		101	702	703	704	705	206	710	711	712	713	715	716	717	721	732	733	734		013	010	611	612	613	621	622	623	625	626	629	630	631	632	634	640	643	644	645

3	
	ಖ ಲು ಈ 4 rv ○ – r
	445012
	4 rv O L r
	0 - 4
	— т
	ז נ
	o re
	5
	5
	zc
	νc
	សៈ
	ro r
	ດະດ
	22
	50
	5
	5
	5
	5
	70
	rc
	5
	ъ
-	Persons with nasal cancer
	7
	7
	7
	7
	7
į	7

Group	No. of subjects	Mean age (range)	Lung carcinoma antigen	LAI index Nasal carcinoma antigen	Breast carcinoma antigen
Controls	17	51	3/17	4/17	1/17
		(29-66)	(18%)	(24%)	(6%)
Nickel-exposed	51	48	21/51	16/51	7/51
workers		(27-78)	(41%)	(31%)	(14%)
Short-term	18	38	5/18	5/18	1/18
employment		(27-64)	(28%)	(28%)	(6%)
Long-term	33	54	16/33	11/33	6/33
employment		(39-78)	(49%)	(34%)	(20%)
Persons with	6	70	4/6	5/6	1/6
nasal cancer		(57-83)	(67%)	(83%)	(17%)

Table 2. H-LAI responses in nickel refinery workers and persons with lung cancer

refinery workers have a high frequency of epithelial dysplasia and that these lesions should probably be interpretated as preneoplastic. Cytological studies have shown that preneoplastic epithelial changes due to nickel exposure also occur in the bronchial epithelium [24].

Recent cytogenetic studies showed that nickel workers have an increased incidence of sister chromatid exchange compared to nonexposed persons [29]. In the present study attempts have been made to use immunological methods in identifying a group with increased risk of respiratory tract carcinomas.

The original hemocytometer leukocyte adherence inhibition test has proved useful in the detection of women with increased risks of breast carcinoma [30]. Previous studies with the H-LAI assay have shown that humoral immune reactivity against cancer antigen can be demonstrated several years before the clinical diagnosis. Thus in 3 out of 4 cases of lung cancer, positive response has been obtained in the H-LAI assay up to 5 years prior to cancer diagnosis [16]. In the present study, 56% of the nickel workers with nasal epithelial dysplasia reacted against lung carcinoma antigen and 37% against nasal carcinoma antigen. The higher reaction rate against lung carcinoma antigen may be related to the higher probability of developing lung cancer than nasal cancer. Since none of the persons participating in the study had developed cancer one year following the sampling of blood, the observed positive H-LAI response may be due to the presence of preneoplastic lesions.

The finding that 4 out of 6 (67%) patients with nasal carcinoma reacted against lung cancer antigen might in part be explained by the high risk of these persons of developing lung cancer. Thus nasal epithelial dyplasia in the nickel refinery worker may occur simultaneously with similar changes in the lung. The

fact that 3 workers with nasal dysplasia have developed lung cancer gives support to this hypothesis (Torjussen, personal munications). The high reaction rate with the lung cancer antigen may also suggest crossreactivity between the lung and nasal carcinoma antigens. In previous studies we have found cross-reactivity between lung and breast cancer antigens [12-13]. There are several hypotheses concerning the existence of cancer-related antigens in humans. Common cancer-related antigens have also been suggested in different types of cancer [31]. It is of interest that the reaction against the breast carcinoma antigen, which was included in the study as a nonspecific antigen, was significantly higher in the group of workers with the greatest probability of developing cancer and that most of the persons who reacted against the breast carcinoma antigen also reacted against the lung and nasal carcinoma antigens.

The present work shows that there is a higher response rate to lung cancer antigen in the long-term employees when compared to controls (P = 0.03) and short-term employees (P = 0.15). Interestingly, the response rate was significantly higher among nickel workers with nasal epithelial dysplasia than in those without (P = 0.03). Although not statistically significant, the same trend was found for the nasal carcinoma antigen. The results support the hypothesis that changes take place in the bronchial epithelium in the preneoplastic stage, with appearance of antigenic determinants shared with those found in lung carcinoma. Moreover, the present data strengthen the usefulness of the H-LAI test for identification of individuals with an increased risk of developing cancer.

Acknowledgements—The excellent technical assistance of Ms Pauline M. Gorton is gratefully acknowledged. Many thanks are due to Dr. Per Eker for providing mass cultures of the Calu-1 and MCF-7 cell lines and for valuable discussions.

Table 3. H-LAI response according to age groups

				LAI	LAI index		
Group	No. of subjects	Lung carcinoma antigen	Persons < 50 years Nasal carcinoma antigen	Breast carcinoma antigen	Lung carcinoma antigen	Persons > 50 years Nasal carcinoma antigen	Breast carcinoma antigen
Controls	17	1/6	1/6	9/0	2/11	2/11	1/11
		(17%)	(17%)	(%0)	(18%)	(18%)	(%6)
Nickel-exposed	51	10/26	8/26	2/26	11/25	8/25	5/25
workers		(38%)	(31%)	(8%)	(44%)	(32%)	(20%)

Table 4.	H-LAI	response on	persons	with	or	without	dysplasia
----------	-------	-------------	---------	------	----	---------	-----------

Group	No. of subjects	Mean age (range)	Lung carcinoma antigen	LAI index Nasal carcinoma antigen	Breast carcinoma
Nickelworkers	24	41	6/24	6/24	1/24
without dysplasia		(27-64)	(25%)	(25%)	(4%)
Nickelworkers	27	54	15/27	10/27	6/27
with dysplasia		(43–78)	(56%)	(37%)	(22%)

REFERENCES

- FRANCHIMONT P, ZANGERLE PF. Present and future clinical relevance of tumor markers. Eur J Cancer 1977, 13, 637-646.
- NØRGAARD-PEDERSEN B, AXELSEN NH (eds). Carcinoembryonic proteins. Recent progress with reviews by leading experts. Scand J Immunol (Suppl) 1978, 8, 1-800.
- 3. ROBINS RA, BALDWIN RW. Immune markers on cancer cells. Cancer Immunol Immunother 1977, 2, 205-207.
- 4. ROSEN SW, WEINTRAUB BD, VAITUKAITIS JL, SUSSMAN HA, HERSHMAN JM, MUGGIA FM. Placental proteins and their subunits as tumor markers. Ann Intern Med 1975, 82, 71-83.
- 5. WEITZEL HK, SCHNEIDER J. Alpha-Fetoprotein in clinical medicine. Stuttgart, Georg Thieme Verlag, 1979.
- GOLDROSEN MH, HOWELL JH (eds). International Workshop on Leukocyte Adherence Inhibition. Cancer Res 1979, 39, 552-662.
- 7. GROSSER N, THOMSON DMP. Cell-mediated antitumor immunity in breast cancer patients evaluated by antigen induced leukocyte adherence inhibition in test tubes. Cancer Res 1975, 35, 2571-2579.
- 8. HALLIDAY WJ, MILLER S. Leukocyte adherence inhibition: a simple test for cell-mediated tumor immunity and serum blocking factors. *Int J Cancer* 1972, **9**, 477–493.
- 9. HERBERMAN RB, McIntire KB (eds). *Immunodiagnosis of Cancer*. New York, Marcel Dekker, 1979, Immunology ser. 9, Part 2, Ch. 7.
- 10. POWELL AE, SLOSS AM, SMITH RN, MAKLEY JT, HUBAY CA. Specific responsiveness of leukocytes to soluble extracts of human tumors. Int J Cancer 1975, 16, 905-913.
- 11. SCHUSTER J, THOMSON DMP, FUKS A, GOLD P. Immunologic approach to diagnosis of malignancy. *Prog Exp Tumor Res* 1980, 25, 83-139.
- 12. KOTLAR HK, SANNER T. Humoral antitumor immune responses in patients with breast cancer measured with the leukocyte adherence inhibition technique. J Natl Cancer Inst 1981, 66, 265-271.
- 13. SANNER T, KOTLAR HK, EKER P. Immune responses in lung cancer patients measured by modified leukocytes adherence inhibition test using serum. Cancer Lett 1980, 8, 283-290.
- 14. KOTLAR HK, SANNER T. Role of circulating antibodies in the humoral leukocyte adherence inhibition of lung and breast cancer patients. Cancer Lett 1980, 11, 11-19.
- 15. KOTLAR HK, SANNER T. Role of immune complexes in the humoral leukocyte adherence inhibition test. Cancer Immunol Immunother 1981, 11, 109-113.
- 16. KOTLAR HK, SANNER T, EKER P et al. Immune anti-tumor response in the preclinical period of lung cancer. Eur J Cancer Clin Oncol 1982, 18, 317-319.
- 17. DOLL R, MORGAN LG, SPEIZER FE. Cancer of the lung and nasal sinuses in nickel workers. Br J Cancer 1970, 24, 623-632.
- 18. PEDERSEN E, HÖGETVEIT AC, ANDERSEN A. Cancer of respiratory organs among workers at nickel refinery in Norway. Int J Cancer 1973, 12, 32-41.
- 19. SUNDERMAN FW. Nickel carcinogenesis. In: SUNDERMAN FW, ed. Nickel. Washington, National Academy of Science, 1975, 144-188.
- 20. Kreyberg L. Lung cancer in workers in a nickel refinery. Br J Ind Med 1978, 35, 109-116.
- 21. SUNDERMAN FW. Recent research on nickel carcinogenesis. Envir Health Perspect 1981, 40, 131-141.
- 22. TORJUSSEN W, SOLBERG LA, HÖGETVEIT AC. Histopathologic charges at the nasal mucosa in nickel workers. A pilot study. Cancer 1979, 44, 963-974.

- 23. TORJUSSEN W, SOLBERG LA, HÖGETVEIT AC. Histopathological of the nasal mucosa in active and retired nickel workers. Br J Cancer 1979, 40, 568-580.
- 24. McEvans JC. Five-year review of sputum cytology in workers at a nickel sinter plant. In: Book of Abstracts from Kristiansand Conference on Nickel Toxicology. Ann Clin Lab Sci 1978, 8, 503.
- 25. BØYUM A. Isolation of lymphocytes, granulocytes and macrophages. Scand J Immunol 1976, 5 (Suppl. 5), 9-15.
- 26. OLDHAM RK, DEAN JH, CANNON GB et al. Cryopreservation of human lymphocyte function as measured by in vitro assays. Int J Cancer 1976, 18, 145-155.
- 27. ANDERSEN A, HÖGETVEIT AC, MAGNUS K. A follow-up study among nickel workers. In: BROWN SS, SUNDERMAN FW, eds. *Nickel Toxicology*. New York, Academic Press, 1980, 31-32.
- 28. BOYSEN M, WAKSVIK H. SOLBERG LA, REITH A, HÖGETVEIT AC. Histopathological follow-up studies and chromosome analysis in nickel workers. In: BROWN SS, SUNDERMAN FW, eds. *Nickel Toxicology*. New York, Academic Press, 1980, 35–38.
- 29. WAKSVIK H, BOYSEN M. Cytogenetic analyses of lymphocytes from nickel refinery workers. *Mutat Res* 1982, 103, 185-190.
- 30. SANNER T, BRENNHOVD I, CHRISTENSEN I, JØRGENSEN O, KVALØY S. Cellular antitumor responses in women with risk factors for breast cancer. Cancer Res 1979, 39, 654-657.
- 31. SELL S. Cancer Markers. Diagnostic and Development Significance. Clifton, NJ, The Humana Press, 1980.